#### **CAMBRIDGE INTERNATIONAL EXAMINATIONS**

**Cambridge International Advanced Level** 

## MARK SCHEME for the October/November 2014 series

# 9709 MATHEMATICS

**9709/32** Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

 ${\small \circledR}$  IGCSE is the registered trademark of Cambridge International Examinations.



| Page 2 | Mark Scheme                                             | Syllabus | Paper |
|--------|---------------------------------------------------------|----------|-------|
|        | Cambridge International A Level – October/November 2014 | 9709     | 32    |

### **Mark Scheme Notes**

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol 
   <sup>↑</sup> implies that the A or B mark indicated is allowed for work correctly following
   on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
   A and B marks are not given for fortuitously "correct" answers or results obtained from
   incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
  B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

| Page 3 | Mark Scheme                                             | Syllabus | Paper |
|--------|---------------------------------------------------------|----------|-------|
|        | Cambridge International A Level – October/November 2014 | 9709     | 32    |

The following abbreviations may be used in a mark scheme or used on the scripts:

| AEF | Any Equivalent Form (of answer is equally acceptable)                                                                                                                                   |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AG  | Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)                                                     |
| BOD | Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)                                                                                                  |
| CAO | Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)                                                                                             |
| CWO | Correct Working Only – often written by a 'fortuitous' answer                                                                                                                           |
| ISW | Ignore Subsequent Working                                                                                                                                                               |
| MR  | Misread                                                                                                                                                                                 |
| PA  | Premature Approximation (resulting in basically correct work that is insufficiently accurate)                                                                                           |
| SOS | See Other Solution (the candidate makes a better attempt at the same question)                                                                                                          |
| SR  | Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance) |

### **Penalties**

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \"" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

| P | Page 4 Mark Scheme Syllabus |                                                                | Paper                                                                                                                                                                                                                                                                                                                   |          |                            |     |
|---|-----------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------|-----|
|   |                             | Camb                                                           | Cambridge International A Level – October/November 2014 9709                                                                                                                                                                                                                                                            |          | 32                         |     |
| 1 | Obt                         |                                                                | ogarithm of a power<br>linear equation in any form, e.g. $x = (x-2) \ln 3$<br>= 22.281                                                                                                                                                                                                                                  |          | M1<br>A1<br>A1             | [3] |
| 2 | (i)                         | _                                                              | oly ordinates 2, 1.1547, 1, 1.1547<br>formula, or equivalent, with $h = \frac{1}{6}\pi$ and four ordinates<br>wer 1.95                                                                                                                                                                                                  |          | B1<br>M1<br>A1             | [3] |
|   | (ii)                        | _                                                              | nisable sketch of $y = \csc x$ for the given interval tement that the estimate will be an overestimate                                                                                                                                                                                                                  |          | B1<br>B1                   | [2] |
| 3 | and<br>Sub<br>Obt<br>Solv   | obtain a correstitute $x = 2$                                  |                                                                                                                                                                                                                                                                                                                         |          | B1<br>M1<br>A1<br>M1<br>A1 | [5] |
| 4 | (i)                         | Obtain either $Use \frac{dy}{dx} = \frac{dy}{dt}$ Obtain the g | given answer                                                                                                                                                                                                                                                                                                            |          | M1<br>A1<br>M1<br>A1       | [4] |
|   | (ii)                        | Use Pythage                                                    | ect equation for the tangent in any form oras given answer                                                                                                                                                                                                                                                              |          | B1<br>M1<br>A1             | [3] |
| 5 | (i)                         | Substitute z EITHER: OR:                                       | = 1 + i and obtain $w = \frac{1+2i}{1+i}$<br>Multiply numerator and denominator by the conjugate of the deno or equivalent<br>Simplify numerator to 3 + i or denominator to 2<br>Obtain final answer $\frac{3}{2} + \frac{1}{2}i$ , or equivalent<br>Obtain two equations in $x$ and $y$ , and solve for $x$ or for $y$ | minator, | B1<br>M1<br>A1<br>A1       |     |
|   |                             |                                                                | Obtain $x = \frac{3}{2}$ or $y = \frac{1}{2}$ , or equivalent<br>Obtain final answer $\frac{3}{2} + \frac{1}{2}i$ , or equivalent                                                                                                                                                                                       |          | A1<br>A1                   | [4] |

| Page 5        |                                                                                                                                                                                                        |           |     |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|
|               | Cambridge International A Level – October/November 2014 970                                                                                                                                            | 9 32      |     |
| (;;)          | FITHER: Substitute w = z and obtain a 2 term quadratic equation in z                                                                                                                                   |           |     |
| ( <b>II</b> ) | EITHER: Substitute $w = z$ and obtain a 3-term quadratic equation in z,<br>e.g. $iz^2 + z - i = 0$                                                                                                     | В1        |     |
|               | Solve a 3-term quadratic for z or substitute $z = x + iy$ and use a correct                                                                                                                            | DI        |     |
|               | method to solve for $x$ and $y$                                                                                                                                                                        | M1        |     |
|               | OR: Substitute $w = x + iy$ and obtain two correct equations in x and y by equ                                                                                                                         | ating     |     |
|               | real and imaginary parts                                                                                                                                                                               | B1        |     |
|               | Solve for $x$ and $y$                                                                                                                                                                                  | M1        |     |
|               | Obtain a correct solution in any form, e.g. $z = \frac{-1 \pm \sqrt{3} i}{2i}$                                                                                                                         | A1        |     |
|               |                                                                                                                                                                                                        |           |     |
|               | Obtain final answer $-\frac{\sqrt{3}}{2} + \frac{1}{2}i$                                                                                                                                               | A1        | [4] |
| <b>6</b> (i)  | Integrate and reach $bx\ln 2x - c \int x \cdot \frac{1}{x} dx$ , or equivalent                                                                                                                         | M1*       |     |
|               |                                                                                                                                                                                                        |           |     |
|               | Obtain $x \ln 2x - \int x \cdot \frac{1}{x} dx$ , or equivalent                                                                                                                                        | A1        |     |
|               | Obtain integral $x \ln 2x - x$ , or equivalent                                                                                                                                                         | A1        |     |
|               | Substitute limits correctly and equate to 1, having integrated twice                                                                                                                                   | M1(dep*)  |     |
|               | Obtain a correct equation in any form, e.g. $a \ln 2a - a + 1 - \ln 2 = 1$<br>Obtain the given answer                                                                                                  | A1<br>A1  | [6] |
|               | Obtain the given answer                                                                                                                                                                                | AI        | [6] |
| (ii)          | Use the iterative formula correctly at least once                                                                                                                                                      | M1        |     |
|               | Obtain final answer 1.94                                                                                                                                                                               | A1        |     |
|               | Show sufficient iterations to 4 d.p. to justify 1.94 to 2d.p. or show that there is a sign change in the interval (1.935, 1.945).                                                                      | A1        | [3] |
|               | change in the interval (1.955, 1.945).                                                                                                                                                                 | 711       | [5] |
| <b>(i)</b>    | Separate variables correctly and attempt to integrate at least one side                                                                                                                                | B1        |     |
|               | Obtain term lnR                                                                                                                                                                                        | B1        |     |
|               | Obtain $\ln x - 0.57x$                                                                                                                                                                                 | B1        |     |
|               | Evaluate a constant or use limits $x = 0.5$ , $R = 16.8$ , in a solution containing terms of th $a \ln R$ and $b \ln x$                                                                                | e form M1 |     |
|               | Obtain correct solution in any form                                                                                                                                                                    | A1        |     |
|               | Obtain a correct expression for $R$ , e.g. $R = xe^{(3.80 - 0.57x)}$ , $R = 44.7xe^{-0.57x}$ or                                                                                                        | 111       |     |
|               |                                                                                                                                                                                                        |           |     |
|               | $R = 33.6xe^{(0.285 - 0.57x)}$                                                                                                                                                                         | A1        | [6] |
| ( <b>ii</b> ) | Equate $\frac{dR}{dx}$ to zero and solve for $x$                                                                                                                                                       | M1        |     |
|               |                                                                                                                                                                                                        |           |     |
|               | State or imply $x = 0.57^{-1}$ , or equivalent, e.g. 1.75                                                                                                                                              | A1        |     |
|               | Obtain $R = 28.8$ (allow 28.9)                                                                                                                                                                         | A1        | [3] |
| (i)           | Use $\sin(A + B)$ formula to express $\sin 3\theta$ in terms of trig. functions of $2\theta$ and $\theta$                                                                                              | M1        |     |
| <b>(i)</b>    | Use correct double angle formulae and Pythagoras to express $\sin \theta$ in terms of $\sin \theta$                                                                                                    | M1        |     |
|               | Obtain a correct expression in terms of $\sin \theta$ in any form                                                                                                                                      | A1        |     |
|               | Obtain the given identity                                                                                                                                                                              | A1        | [4] |
|               | [SR: Give M1 for using correct formulae to express RHS in terms of $\sin \theta$ and $\cos 2\theta$ ,                                                                                                  |           |     |
|               | then M1A1 for expressing in terms of $\sin \theta$ and $\sin 3\theta$ only, or in terms of $\cos \theta$ , $\sin \theta$ , $\cos 2\theta$ and $\sin 2\theta$ then A1 for obtaining the given identity. |           |     |

of  $\cos \theta$ ,  $\sin \theta$ ,  $\cos 2\theta$  and  $\sin 2\theta$ , then A1 for obtaining the given identity.]

| Page 6 | Mark Scheme                                             | Syllabus | Paper |
|--------|---------------------------------------------------------|----------|-------|
|        | Cambridge International A Level – October/November 2014 | 9709     | 32    |

(ii) Substitute for x and obtain the given answer

B1 [1]

[4]

(iii) Carry out a correct method to find a value of x

M1

Obtain answers 0.322, 0.799, -1.12

A1 + A1 + A1

[Solutions with more than 3 answers can only earn a maximum of A1 + A1.]

9 (i) State or imply the form  $\frac{A}{1-x} + \frac{B}{2-x} + \frac{C}{(2-x)^2}$ 

Use a correct method to determine a constant

M1

Obtain one of A = 2, B = -1, C = 3

Obtain a second value

A1

Obtain a third value A1 [5]

[The alternative form  $\frac{A}{1-x} + \frac{Dx + E}{(2-x)^2}$ , where A = 2, D = 1, E = 1 is marked

B1M1A1A1A1 as above.]

(ii) Use correct method to find the first two terms of the expansion

of 
$$(1-x)^{-1}$$
,  $(2-x)^{-1}$ ,  $(2-x)^{-2}$ ,  $(1-\frac{1}{2}x)^{-1}$  or  $(1-\frac{1}{2}x)^{-2}$ 

M1

Obtain correct unsimplified expansions up to the term in  $x^2$  of each partial fraction

 $A1\sqrt{+}A1\sqrt{+}A1\sqrt{-}$ 

Obtain final answer  $\frac{9}{4} + \frac{5}{2}x + \frac{39}{16}x^2$ , or equivalent

A1 **[5]** 

[Symbolic binomial coefficients, e.g.  $\binom{-1}{1}$  are not sufficient for M1. The  $\checkmark$  is on A,B,C.]

[For the A,D,E form of partial fractions, give M1 A1 $\checkmark$  A1 $\checkmark$  for the expansions then, if  $D \neq 0$ , M1 for multiplying out fully and A1 for the final answer.]

[In the case of an attempt to expand  $(x^2 - 8x + 9)(1 - x)^{-1}(2 - x)^{-2}$ , give M1A1A1 for the expansions, M1 for multiplying out fully, and A1 for the final answer.]

10 (i) EITHER: Find  $\overrightarrow{AP}$  (or  $\overrightarrow{PA}$ ) for a point P on l with parameter  $\lambda$ ,

e.g. 
$$\mathbf{i} - 17\mathbf{j} + 4\mathbf{k} + \lambda(-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$$

B1

M1

Calculate scalar product of AP and a direction vector for l and equate to zero M1 Solve and obtain  $\lambda = 3$  A1

Carry out a complete method for finding the length of AP M1
Obtain the given answer 15 correctly A1

OR1: Calling (4, -9, 9) B, state  $\overrightarrow{BA}$  (or  $\overrightarrow{AB}$ ) in component form, e.g.  $-\mathbf{i} + 17\mathbf{j} - 4\mathbf{k}$  B1

Calculate vector product of  $\overrightarrow{BA}$  and a direction vector for l,

e.g.  $(-\mathbf{i} + 17\mathbf{j} - 4\mathbf{k}) \times (-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$  M1

Obtain correct answer, e.g.  $-30\mathbf{i} + 6\mathbf{j} + 33\mathbf{k}$  A1

Divide the modulus of the product by that of the direction vector

Obtain the given answer correctly

A1

OR2: State  $\overrightarrow{BA}$  (or  $\overrightarrow{AB}$ ) in component form

Use a scalar product to find the projection of BA (or AB) on l M1

Obtain correct answer in any form, e.g.  $\frac{27}{\sqrt{9}}$ 

Use Pythagoras to find the perpendicular

| Page 7 |                 | Mark Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Syllabus   | Pape        | er  |
|--------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|-----|
|        | Cambrio         | lge International A Level – October/November 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9709       | 32          |     |
|        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |             |     |
|        |                 | btain the given answer correctly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | <b>A</b> 1  |     |
| OR3:   |                 | tate $BA$ (or $AB$ ) in component form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | B1          |     |
|        |                 | se a scalar product to find the cosine of ABP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | M1          |     |
|        | O               | btain correct answer in any form, e.g. $\frac{27}{\sqrt{9.\sqrt{306}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | A1          |     |
|        | U               | se trig. to find the perpendicular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | M1          |     |
|        | O               | btain the given answer correctly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | A1          |     |
| C      | <i>PR</i> 4: S1 | tate $\overrightarrow{BA}$ (or $\overrightarrow{AB}$ ) in component form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | B1          |     |
|        |                 | ind a second point $C$ on $\overline{l}$ and use the cosine rule in triangle $ABC$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |             |     |
|        |                 | osine of angle A, B, or C, or use a vector product to find the area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of ABC     | M1          |     |
|        |                 | btain correct answer in any form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | A1          |     |
|        |                 | se trig. or area formula to find the perpendicular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | M1          |     |
| _      |                 | btain the given answer correctly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | A1          |     |
| C      |                 | tate correct $\overrightarrow{AP}$ (or $\overrightarrow{PA}$ ) for a point $P$ on $l$ with parameter $\lambda$ in an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ny form    | B1          |     |
|        |                 | se correct method to express $AP^2$ (or $AP$ ) in terms of $\lambda$ btain a correct expression in any form,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | M1          |     |
|        |                 | g. $(1-2\lambda)^2 + (-17+\lambda)^2 + (4-2\lambda)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | <b>A</b> 1  |     |
|        | C               | arry out a method for finding its minimum (using calculus, algeb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ora        |             |     |
|        |                 | Pythagoras)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | M1          |     |
|        | O               | btain the given answer correctly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | A1          | [5] |
| (ii)   |                 | Substitute coordinates of a general point of $l$ in equation of plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |             |     |
|        |                 | equate constant terms or equate the coefficient of $\lambda$ to zero, obtaining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | iining an  | 3 54 11     |     |
|        |                 | equation in $a$ and $b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | M1*         |     |
|        |                 | Obtain a correct equation, e.g. $4a - 9b - 27 + 1 = 0$<br>Obtain a second correct equation, e.g. $-2a + b + 6 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | A1<br>A1    |     |
|        |                 | Solve for $a$ or for $b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M16        | dep*)       |     |
|        |                 | Obtain $a = 2$ and $b = -2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,11(      | A1          |     |
| C      |                 | Substitute coordinates of a point of $l$ and obtain a correct equation $l$ and $l$ an | on,        |             |     |
|        |                 | e.g. $4a - 9b = 26$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | B1          |     |
|        |                 | EITHER: Find a second point on $l$ and obtain an equation in $a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and $b$    | M1*         |     |
|        |                 | Obtain a correct equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | A1          |     |
|        |                 | OR: Calculate scalar product of a direction vector for $l$ and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d a vector | ) / 1 ±     |     |
|        |                 | normal to the plane and equate to zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | M1*         |     |
|        |                 | Obtain a correct equation, e.g. $-2a + b + 6 = 0$<br>Solve for a or for b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M17.       | A1<br>dep*) |     |
|        |                 | Obtain $a = 2$ and $b = -2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1411(      | A1          | [5] |
|        |                 | Comm a 2 and 0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 111         |     |